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The Randić index of an organic molecule whose molecular graph is G is defined as
the sum of (d(u)d(v))−1/2 over all pairs of adjacent vertices of G, where d(u) is the
degree of the vertex u in G. In Discrete Mathematics 257, 29–38 by Delorme et al.
gave a best-possible lower bound on the Randić index of a triangle-free graph G with
given minimum degree δ(G). In the paper, we first point out a mistake in the proof of
their result (Theorem 2 of [2002]), and then we will show that the result holds when
δ(G) � 2.
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1. Introduction

A single number which characterizes the graph of a molecular is called a
graphtheoretical invariant or topological index. The structure property relation-
ships quantity the connection between the structure and properties of molecules.
The connectivity index is one of the most popular molecular-graph-based struc-
ture-descriptors (see [13]), and is defined in [11] as

C(λ) = C(λ; G) =
∑

(d(u)d(v))λ,
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where d(u) denotes the degree of the vertex u of the molecular graph G, where
the summation goes over all pairs of adjacent vertices of G and where λ is a per-
tinently chosen exponent. The respective structure-descriptor was introduced a
quarter of century ago by Randić, who chose λ = −(1/2), and now is referred to
as the Randić index or molecular connectivity index or simply connectivity index.
The Randić index has been closely correlated with many chemical properties [9].
It is viewed as a measure of branching of the carbon-atom skeleton, and hence
the ordering of isomeric alkanes with respect to decreasing C(−1/2)-values basi-
cally represents their ordering according to the increasing extent of branching.
This index was found to parallel closely the boiling point, Kovats constants,
and a calculated surface. However, other choice of λ were also considered (see
[2,7,8,11]) and the exponent λ was treated (see [5,4,12]) an adjustable parame-
ter, chosen so as to optimize the correlation between C(λ) and some selected
class of organic compounds. Comparing with other topological indexes reported
by Amidon and Anik (see [10]), the Randić index appears to predict the boil-
ing points of alkanes more closely, and only it takes into account the bonding
or adjacency degree among carbons in alkanes. More data and additional refer-
ences on C(λ) can be found in [6,7].

In order to discuss the Randić index of the molecular graph, we first intro-
duced some terminologies and notations of graphs. Let G = (V , E) be a graph.
For a vertex x of G, we denote the neighborhood and the degree of x by N(x)

and d(x), respectively. The minimum degree of G is denoted by δ(G). We will
use G− x or G− xy to denote the graph that arises from G by deleting the ver-
tex x ∈ V (G) or the edge xy ∈ E(G). Similarly, G + xy is a graph that arises
from G by adding an edge xy /∈ E(G), where x, y ∈ V (G).

Let G be a graph and uv ∈ E(G). The Randić weight or simply weight of
the edge uv is R(uv) = 1/

√
d(u)d(v). Then, the Randić index of a graph G,

R(G) = C(−1/2; G), is the sum of the weights of its edges.
In [1], Bollobás and Erdös show that R(G) �

√
n − 1 if G is a connected

graph of order n.
In Delorme et al. [3], prove a lower bound on R(G) for δ(G) � 2.

Theorem 1 [3]. Let G = (V , E) be a graph of order n with δ(G) � 2. Then

R(G) �
√

2(n − 1) + 1
n − 1

−
√

2√
n − 1

with equality if and only if G = K∗
2,n−2. (Where K∗

2,n−2 is a graph that arises
from a complete bipartite graph K2,n−2 by joining the vertices in the part with 2
vertices by a new edge).

Note that K∗
2,n−2 contains triangles and

√
2(n − 2) >

√
2(n − 1)+ 1

n−1 −
√

2√
n−1

for n � 4, and hence in [3], Delorme et al. gave a best-possible lower bound on
R(G) in terms of δ when G is triangle-free as follows.
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(Theorem 2 of [3]). Let G = (V , E) be a triangle-free graph of order n with
δ(G) � δ � 1. Then

R(G) �
√

δ(n − δ)

with equality if and only if G = Kδ,n−δ.
Although we find a mistake in the proof of Theorem 2 of [3], we still believe

that Theorem 2 of [3] is correct. In section 3, we will show (Theorem 2 of [3])
which supports Theorem 2.

Theorem 2. Let G = (V , E) be a triangle-free graph of order n with δ(G) � 2.
Then

R(G) �
√

2(n − 2).

2. Examples

Let G be a triangle-free graph of order n with δ(G) � δ � 1 and v0 a vertex
of minimum degree of G. In the proof of Theorem 2, the authors claimed that

R(G − vo) �
√

δ(n − δ − 1). (∗)

We note that (∗) is not always true for all triangle-free graphs. The following
graphs are the counterexamples. In order to depict construction of the counte-
rexamples, we first define one kind of graph operation as follows.

For a given graph H with V (H) = {v1, . . . , vs}, we define the graph
G(H, m)(m � 2) as follows. Take m disjoint copies H1, . . . , Hm of H , with the
vertex vi

j in Hi corresponding to the vertex vj in H(1 � j � s, 1 � i � m). Let
G(H, m) be the graph obtained from HI ∪ · · · ∪ Hm by joining vk

j and vk′
j+1(k �=

k′, 1 � j � s(vk′
s+1 = vk′

1 ) for k, k′ = 1, 2, . . . , m.

Example 1. Regular graph. Let H = (V , E) be a graph with V = {v1, v2, v3, v4}
and E(H) = {v1v2, v3v4}. Denote G = G(H, m). Obviously, G is triangle-free. In
the graph G, we have that n = 4m, δ(G) = 2m− 1. Let v0 be any vertex of G. It
is easy to see that

R(G − v0)= 2m − 1√
(2m − 1)(2m − 1)

+ (2m − 1)(2m − 2)√
(2m − 1)(2m − 2)

= 1 +
√

(2m − 1)(2m − 2)

and
√

δ(n − δ − 1) =
√

2m(2m − 1).
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Since
√

(2m)(2m − 1) −
√

(2m − 1)(2m − 2) − 1

=
(√

2m − 1 − √
2m − 2

)
−
(√

2m − √
2m − 1

)

√
2m + √

2m − 2
> 0,

we have R(G − v0) <
√

δ(n − δ − 1).

Example 2. Non-regular graph. Let P4 = v1v2v3v4, a path of order 4, and let
G = G(P4, m). Obviously, G is triangle-free. In the graph G, we have that n =
4m, δ(G) = 2m−1. Let v0 be any vertex of G with d(v0) = δ(G) = 2m−1. Then

R(G − v0) = m(m + 1)√
2m(2m − 1)

+ (m + 1)(m − 1)√
(2m − 1)(2m − 1)

+ m(m − 1)√
2m(2m − 2)

+ (m − 1)(m − 2)√
(2m − 1)(2m − 2)

and
√

δ(n − δ − 1) =
√

2m(2m − 1).

It is checked (in Appendix A) that R(G − v0) <
√

δ(n − δ − 1).

Remark. Note that there is NO vertex with minimum degree such that (∗) holds
in these graphs.

3. Proof of Theorem 2

In order to prove Theorem 2, we first need some lemmas.

Lemma 1 [1]. Let x1x2 be an edge of maximal weight in a graph G. Then

R(G − x1x2) < R(G).

Lemma 2. Let d, d1, d2 be positive integers and

f (d1, d2) = 1√
2

(√
d1 −

√
d1 − 1

)
+ 1√

2

(√
d2 −

√
d2 − 1

)

+
(

1√
2

− 1√
d1

)
−
(

1√
2

− 1√
d2

)

−
(

1√
2

− 1√
d1 − 1

)(
1√
2

− 1√
d2 − 1

)
.

If 3 � d1, d2, � d, then

f (d1, d2) �
√

2(
√

d − √
d − 1).
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Proof. From the proof of Lemma 1 in [3], we have

f (d1, d2) � f (d, d)

=
√

2
(√

d − √
d − 1

)
+
(

1√
d − 1

− 1√
d

)(√
2 − 1√

d − 1
− 1√

d

)
.

Obviously, 1√
d−1

− 1√
d

> 0. On the other hand, by d � 3, we have

√
2 − 1√

d − 1
− 1√

d
�

√
2 − 1√

2
− 1√

3
> 0,

hence f (d1, d2) �
√

2(
√

d − √
d − 1).

The following result holds from the proof of Theorem 2 of [3].

Lemma 3. Let G = (V , E) be a triangle-free graph of order n with δ(G) � δ � 1.
Let Vδ = {v : d(v) = δ}. If there exists a vertex v ∈ Vδ such that N(v) ∩ Vδ = ∅,
then

R(G) �
√

δ(n − δ).

Now, we will prove our theorem.

Proof. We assume that G is a counterexample of minimal order for which R(G)

is minimal. Since G is a triangle-free graph and δ(G) � 2, n � 4. If δ(G) > 2,
then, by Lemma 1, we have a triangle-free graph G′ of minimum degree at least
2 and with R(G′) < R(G) by deleting the maximal weight edge, a contradiction
with the choice of G. Hence δ(G) = 2. Denote T = {v ∈ V (G) : d(v) = 2}.
If there exists a vertex v ∈ T such that N(v) ∩ T = ∅, then R(G) �

√
2(n − 2)

by Lemma 3, a contradiction with the choice of G. Thus we can assume that
N(v) ∩ T �= ∅ for any v ∈ T . Choose a vertex u ∈ T such that |N(u) ∩ T | is as
small as possible. Let N(u) = {u1, u2} with ul ∈ T and d(u2) = d2 � 2.

Claim 1. (N(u1) ∩ N(u2)) {u} �= ∅.

Proof. Suppose that (N(u1)∩N(u2))\{u} = ∅. Then n � 5 and G′ = G−u+u1u2

is no counterexample, i.e., R(G′) �
√

2(n − 3). Thus

R(G) = R(G′) + 1√
2d2

+ 1
2

− 1√
2d2

�
√

2(n − 3) + 1
2

>
√

2(n − 2),

which is a contradiction.
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By Claim 1 and u1 ∈ T , we can assume that (N(u1) ∩ N(u2)) = {u, v}.
Denote d1 = d(v). Since G is a triangle-free graph, d1 + d2 � n. Let S1, S2 be
the sums of the weights of the edges incident with v and u2 except for the edges
u1v, u2v and uu2, vu2, respectively. Then Si � di−2√

2di
for i = 1, 2.

Claim 2. v ∈ T .

Proof. Suppose v /∈ T . Then by the choice of u, u2 /∈ T . Thus d1, d2 � 3, n � 6
and G′ = G − u − u1 is no counterexample, i.e., R(G′) �

√
2(n − 4). In G′, if

we denote S ′
1, S

′
2 the sums of the weights of the edges incident with v and u2

except for the edge u2v, respectively. Then S ′
i = Si

√
di/(di − 1) for i = 1, 2. Since

d1 + d2 � n and di � 3, di � n − 3 for i = 1, 2. Then

R(G) = R(G′) + 1
2

+ 1√
2d1

+ 1√
2d2

+ 1√
d1d2

+ S1 + S2

− 1√
(d1 − 1)(d2 − 1)

− S1

√
d1

d1 − 1
− S2

√
d2

d2 − 1

�
√

2(n − 4) + 1
2

+ 1√
2d1

+ 1√
2d2

+ 1√
d1d2

− 1√
(d1 − 1)(d2 − 1)

− d1 − 2√
2d1

(√
d1

d1 − 1
− 1

)
− d2 − 2√

2d2

(√
d2

d2 − 1
− 1

)

=
√

2(n − 4) + 1
2

+ 1√
2

(√
d1 −

√
d1 − 1

)
+ 1√

2

(√
d2 −

√
d2 − 1

)

+
(

1√
2

− 1√
d1

)(
1√
2

− 1√
d2

)
−
(

1√
2

− 1√
d1 − 1

)(
1√
2

− 1√
d2 − 1

)
.

Using the same notation as in Lemma 2, we have

R(G) �
√

2(n − 4) + 1
2

+ f (d1, d2).

Since 3 � d1, d2 � n − 3, we have f (d1, d2) �
√

2(
√

n − 3 − √
n − 4) by Lemma

2. Thus

R(G) �
√

2(n − 4) + 1
2

+
√

2(
√

n − 3 − √
n − 4)

=
√

2(n − 2) + 1
2

+
√

2(
√

n − 3 − √
n − 2)

Since

1
2

+
√

2(
√

n − 3 − √
n − 2) � 1

2
+

√
2(

√
6 − 3 − √

6 − 2) > 0

we have R(G) �
√

2(n − 2), which is a contradiction.
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Claim 3. u2 /∈ T .

Proof. Suppose u2 ∈ T . If n = 4, then R(G) = 2 = √
2(4 − 2), a contradiction

with the choice of G. Therefore n �= 4. By G being a triangle-free graph and
δ(G) = 2, we have n � 8. So G′ = G − u − u1 − u2 − v is no counterexample.
Thus

R(G) = R(G′) + 2 �
√

2(n − 6) + 2 �
√

2(n − 2),

which is a contradiction.

By Claims 2 and 3, we have v ∈ T and d2 � 3, Thus d2 � n− 2 by G being
triangle-free. Now, we will complete our proof by considering the following two
cases.

Case 1. d(u2) = d2 � 4. In the case, n � 6 and G′ = G − u − u1 − v is no
counterexample, and then R(G′) �

√
2(n − 5). Thus

R(G) = R(G′) + 1√
2d2

+ 1√
2d2

+ 1
2

+ 1
2

+ S2

(
1 −

√
d2

d2 − 2

)

�
√

2(n − 5) + 1 +
√

d2 − √
d2 − 2√

2

�
√

2(n − 5) + 1 +
√

n − 2 − √
n − 4√

2

=
√

2(n − 5) +
√

2 + 2
√

n − 5 − √
n − 2 − √

n − 4√
2

.

For n�6,
√

2+2
√

n − 5−√
n − 2−√

n − 4 �
√

2+2
√

6 − 5−√
6 − 2−√

6 − 4 = 0,
and hence R(G) �

√
2(n − 2), which is a contradiction.

Case 2. d(u2) = d2 = 3.

Let N(u2) \ {u, v} = {x}, d(x) = d and y ∈ N(x) \ {u2}. If d = 2, then (N(y) ∩
N(u2))\{x} = ∅ by d(u) = d(v) = 2 and d2 = 3. Thus we can derive a contradic-
tion by the same argument as the proof of Claim 1. Hence we can assume that
d � 3 and then n � 8. Let S be the sum of the weights of the edges incident
with x different from u2x. Then S � d−1√

2d
. Since G′ = G − u − u1 − u2 − v is no

counterexample, i.e., R(G′) �
√

2(n − 6), we have
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R(G) = R(G′) + 1 + 2√
6

+ 1√
3d

+ S

(
1 −

√
d

d − 1

)

�
√

2(n − 6) + 1 + 2√
6

+
√

d√
2

−
√

d − 1√
2

− 1√
d

(
1√
2

− 1√
3

)

�
√

2(n − 6) + 1 + 2√
6

− 1√
d

(
1√
2

− 1√
3

)

�
√

2(n − 2) +
√

2(n − 6) +
√

2(n − 2) + 1 + 2√
6

− 1√
3

(
1√
2

− 1√
3

)
.

Since
√

2(n − 6) − √
2(n − 2) + 1 + 2√

6
− 1√

3

(
1√
2

− 1√
3

)
� 3 − 2

√
3 + 1√

6
+ 1

3 > 0,

we have R(G) >
√

2(n − 2), which is a contradiction. Hence the proof of our
Theorem is completed.

Appendix A

Let G be the graph of Example 2 and v0 be any vertex of G with d(v0) =
δ(G). In the following, we will show that

√
δ(n − δ − 1) − R(G − v0) > 0.

We have
√

δ(n − δ − 1) − R(G − v0)

= 3m(m − 1)√
2m(2m − 1)

− (m + 1)(m − 1)

2m − 1
− m(m − 1)√

2m(2m − 2)
− (m − 1)(m − 2)√

(2m − 1)(2m − 2)

= (m − 1)

(
3m√

2m(2m − 1)
− m + 1

2m − 1
− m√

2m(2m − 2)
− m − 2√

(2m − 1)(2m − 2)

)
.

Since m − 1 > 0, it just needs to check that

3m√
2m(2m − 1)

− m + 1
2m − 1

− m√
2m(2m − 2)

− m − 2√
(2m − 1)(2m − 2)

> 0,

i.e.,

3m√
2m(2m − 1)

− m − 2√
(2m − 1)(2m − 2)

>
m + 1

2m − 1
+ m√

2m(2m − 2)
.

Noting that

3m√
2m(2m − 1)

− m − 2√
(2m − 1)(2m − 2)

>
3m

2m
− m − 2

2m − 2
= 2m − 1

2m − 2
> 0



H. Liu et al. / On the Randić index 353

and

m + 1
2m − 1

+ m√
2m(2m − 2)

> 0,

we will check that
(

3m√
2m(2m − 1)

− m − 2√
(2m − 1)(2m − 2)

)2

>

(
m + 1

2m − 1
+ m√

2m(2m − 2)

)2

,

i.e.,

9m

2(2m − 1)
+ (m − 2)2

2(2m − 1)(m − 1)
− 6m(m − 2)

2(2m − 1)
√

m(m − 1)

>
(m + 1)2

(2m − 1)2
+ m

4(m − 1)
+ 2m(m + 1)

2(2m − 1)
√

m(m − 1)
,

i.e.,

5m − 4
2(m − 1)

− (m + 1)2

(2m − 1)2
− m

4(m − 1)
>

m(4m − 5)

(2m − 1)
√

m(m − 1)
,

i.e.,

32m3 − 72m2 + 45m − 4 > 4(2m − 1)(4m − 5)
√

m(m − 1).

Since m � 2, 32m3 − 72m2 + 45m − 4 = (m − 1)(m(32m − 40) + 5) + 1 > 0 and
(2m − 1)(4m − 5)

√
m(m − 1) > 0. Hence we just need to check that

(32m3 − 72m2 + 45m − 4)2 >
(

4(2m − 1)(4m − 5)
√

m(m − 1)
)2

,

i.e.,

1024m6 − 4608m5 + 8064m4 − 6736m3 + 2601m2 − 360m + 16

> 16(m2 − m)(64m4 − 224m3 + 276m2 − 140m + 25),

i.e.,

64m4 − 80m3 − 39m2 + 40m + 16 > 0.

Note that

64m4 − 80m3 − 39m2 + 40m + 16 = m2(8m − 13)(8m + 3) + 40m + 16 > 0

by m � 2, and hence
√

δ(n − δ − 1) − R(G − v0) > 0 holds.
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[7] I. Gutman and M. Leporić, J. Serb. Chem. Soc. 66 (2001) 605.
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